
SHILL: A Secure Shell Scripting Language

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong
Harvard School of Engineering and Applied Sciences

Abstract
The Principle of Least Privilege suggests that software
should be executed with no more authority than it re-
quires to accomplish its task. Current security tools make
it difficult to apply this principle: they either require sig-
nificant modifications to applications or do not facilitate
reasoning about combining untrustworthy components.

We propose SHILL, a secure shell scripting language.
SHILL scripts enable compositional reasoning about se-
curity through contracts that limit the effects of script
execution, including the effects of programs invoked by
the script. SHILL contracts are declarative security poli-
cies that act as documentation for consumers of SHILL
scripts, and are enforced through a combination of lan-
guage design and sandboxing.

We have implemented a prototype of SHILL for
FreeBSD and used it for several case studies including
a grading script and a script to download, compile, and
install software. Our experience indicates that SHILL is a
practical and useful system security tool, and can provide
fine-grained security guarantees.

1 Introduction

Users of commodity operating systems often need to ex-
ecute untrustworthy software. In fact, this is the common
case: due to errors or malicious intent, software regularly
does not behave as expected. The Principle of Least Priv-
ilege (POLP) [31] requires that software should be given
only the authority it needs to accomplish its functionality.
If adhered to, this principle (also known as the Principle
of Least Authority) can help protect systems from erro-
neous or malicious software.

However, commodity systems and their secure tools
fail to adequately support POLP. First, it is difficult for
the user of a commodity system to determine what au-
thority a given piece of software requires to execute cor-
rectly. Second, current mechanisms for limiting author-
ity are difficult to use: they are either coarse-grained or

require significant changes to existing software, and are
often not available to all users [16]. For both of these rea-
sons, users tend to execute software with more authority
than is necessary.

For example, consider scripts to grade homework sub-
missions in a computer science course. Students submit
source code, and a script grade.sh is run on each sub-
mission to compile it and run it against a test suite. The
submission server must execute grade.sh with suffi-
cient authority to accomplish its task, but should also
restrict its authority to protect the server from student-
submitted code and ensure the integrity of grading. At a
coarse grain, the server should allow grade.sh to ac-
cess files and directories necessary to compile, run, and
record the scores of homework submissions, and deny
access to other files or resources. This ensures, for ex-
ample, that a careless student’s code won’t corrupt the
server and a cheating student’s code won’t modify or leak
the test suite. At a fine grain, each call to grade.sh to
grade a single submission should be isolated from the
grading of other submissions. This ensures, for example,
that a cheating student cannot copy solutions from an-
other submission.

Securing a script such as grade.sh is difficult, as
it requires balancing functional and security require-
ments. To begin with, it is a priori unclear what au-
thority grade.sh needs to execute correctly. While the
author of the script may know, the user must exam-
ine the code to try to determine what authority it re-
quires. If the user can identify the required resources,
she can use existing tools for sandboxing program exe-
cution (e.g., [20, 3, 15, 14]) to achieve the coarse-grained
security requirements. However, it is difficult to use the
same tools to enforce the fine-grained security require-
ments described above. This is because achieving these
requirements requires that each invocation of grade.sh
is given different privileges, i.e., it must be executed in a
differently configured sandbox. Configuring all of these
sandboxes correctly is error prone, so users often forgo

provide grade :
{submission : is file && readonly,
tests : is dir && readonly,
working : dir(+create dir with full priv),
grade log : is file && writeable,
wallet : ocaml wallet}→ void;

Figure 1: SHILL contract for a grading script

fine-grained security and violate POLP.

To address these issues, we introduce the SHILL pro-
gramming language. SHILL is a secure shell scripting lan-
guage with features that help apply POLP in commod-
ity operating systems.1 At the core of SHILL are declara-
tive security policies that describe and limit the effects of
script execution, including effects of arbitrary programs
invoked by the script.

These declarative security policies can be used by pro-
ducers of software to provide fine-grained descriptions of
the authority the software needs to execute. This, in turn,
allows consumers of software to inspect the software’s
required authority, and make an informed decision to ex-
ecute the software, reject the software, or apply a more
restrictive policy on the software. The SHILL runtime sys-
tem ensures that script execution adheres to the declared
security policy, providing a simple mechanism to restrict
the authority of software.

Two key features enable SHILL’s declarative secu-
rity policies: language-level capabilities and contracts.
SHILL scripts access system resources only through ca-
pabilities: unforgeable tokens that confer privileges on
resources. SHILL scripts receive capabilities only from
the script invoker; SHILL scripts cannot store or arbitrar-
ily create capabilities. Moreover, SHILL uses capability-
based sandboxes to control the execution of arbitrary
software. Thus, the capabilities that a user passes to a
SHILL script limit the script’s authority, including any
programs it invokes. SHILL’s contracts specify what ca-
pabilities a script requires and how it intends to use them.
SHILL’s runtime and sandboxes enforce these contracts,
hence they serve as fine-grained, expressive, declarative
security policies that bound the effects of a script.

For example, Figure 1 shows a SHILL contract for a
script to grade a single student submission (correspond-
ing to the grade.sh script described above). It is a
declarative security specification for the function grade,
which takes 5 arguments: a read-only file submission
(i.e., the student’s source code), a read-only directory
tests (containing the test suite), a “working directory”

1SHILL is not an interactive shell, but rather a language that presents
operating system abstractions to the programmer and is used primarily
to launch programs. Other languages currently used for this purpose
include Perl, Python, and the scripting portion of Bash.

in which the script may create subdirectories with full
privileges, a writeable file grade log for recording the
student’s grade, and a “wallet” that provides sufficient
capabilities to invoke the OCaml compiler. This con-
tract serves two purposes: it clearly describes what grade
needs to execute correctly and it also provides guarantees
about what grade may do when invoked. Given this con-
tract, a user can be confident that grade satisfies the se-
curity requirements described above, even though grade
will compile and execute student-submitted code. Specif-
ically: grade will not read any other student’s submis-
sion; grade will not communicate over the network (as
it has no capability for network access); grade will not
corrupt the test suite nor write any files other than the
grade log and subdirectories it creates within the work-
ing directory. The implementation of grade (not shown)
focuses solely on the functionality for grading, and is not
concerned with enforcing security requirements.

SHILL offers language abstractions for reasoning about
the authority of pieces of software and their composition.
Specifically, SHILL (1) introduces a capability-based
scripting language with language abstractions (such as
contracts and wallets) to use capabilities effectively,
and (2) implements, on a commodity operating system,
capability-based sandboxes that extend the guarantees of
the scripting language to binary executables and legacy
applications. These language abstractions, and the en-
forcement of these abstractions, make it possible to man-
age authority and follow POLP, even when using and
combining untrusted programs.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the design of SHILL. Our implementa-
tion of SHILL in FreeBSD 9.2 is described in Section 3.
We evaluate SHILL by using it to implement several case
studies, and measure the overhead of SHILL’s security
mechanisms. We present the evaluation results in Sec-
tion 4. Section 5 describes related work.

2 Design and security of SHILL

SHILL aims to meet the following five goals:
1. Script users can control the authority of a script, i.e.,

what system resources it can access or modify.
2. Script users can understand what authority a script

needs in order to accomplish its functionality.
3. Security guarantees of scripts apply transitively to

other programs the script may invoke, including ar-
bitrary executables.

4. SHILL separates the security aspects of scripts from
functional aspects, reducing the impact of security
concerns on the effort required to write scripts.

5. SHILL is compatible with commodity operating sys-
tem abstractions.

foo.txt

Cap-safe script

foo.txt
Binary
executable

Sandbox

contract
file(+read)

MAC: foo.txt: +read

SHILL

Operating System

Ambient script

+read

vnode for file foo.txt

Figure 2: SHILL in a nutshell

To meet these goals, SHILL uses a combination of lan-
guage design and mandatory access control-based sand-
boxing.

In most scripting languages, scripts can access a re-
source (such as a file) using the resource’s well-known
global name. Access control is based on the user on
whose behalf the script executes. Thus, a script’s author-
ity is ambient (i.e., it derives from the script’s execution
context) [25], and a script may access any and all re-
sources that the invoking user may access. SHILL’s secu-
rity is based on capabilities instead of ambient authority.

There are two kinds of SHILL scripts: capability-safe
SHILL scripts, and ambient SHILL scripts. Capability-
safe SHILL scripts play the same role as regular shell
scripts, but do not have ambient authority and must be
given capabilities to access resources. Ambient SHILL
scripts are used to create the initial set of capabilities
to give to capability-safe scripts. They do have ambi-
ent authority, but are very restricted: ambient scripts can
only create capabilities for system resources and invoke
capability-safe SHILL scripts.

Each capability-safe SHILL script comes with a con-
tract that is enforced by the language runtime. A
capability-safe SHILL script can use the capabilities it
possesses to access resources using SHILL’s built-in func-
tions, if allowed by the contract. SHILL scripts can also
invoke arbitrary executables in capability-based sand-
boxes. A capability-based sandbox is created with a set
of capabilities, and enforces a mandatory access control
policy that restricts the executable’s behavior based on
those capabilities and their contracts.

Figure 2 depicts the life cycle of a capability for a file
named foo.txt. First, an ambient script acquires a capa-
bility for the file from the operating system using the
user’s ambient authority. This capability is then passed
to a capability-safe script via a contract, which restricts
the privileges on the capability to +read (i.e., the capa-
bility can be used only to read foo.txt, not to write to it,
etc.). The capability-safe script then runs an executable
in a sandbox, granting it the capability to read the file.

Threat model In SHILL’s threat model, some
capability-safe scripts (and the executables they invoke)

are not trusted. However, their behavior is restricted
by their contracts and the capabilities they are given: a
capability-safe script (and any executables it invokes)
can access resources only as permitted by its contract
and the capabilities it possesses. Of course, the contract
that accompanies a script may also be untrustworthy:
a user should inspect the contract and understand its
security implications before passing capabilities to the
script. The benefit of SHILL’s approach is that it is much
easier to inspect and understand the declarative contract
than to examine the script itself.

SHILL’s trusted computing base includes the operating
system kernel and SHILL runtime. SHILL does not explic-
itly defend against malicious scripts or executables that
exploit security flaws in the kernel or SHILL itself.

The rest of this section describes how SHILL’s design
and features contribute towards these goals, and provides
an introduction to SHILL via several small examples.

2.1 Controlling script authority
Ambient authority makes writing scripts easy: if a script
needs to access a resource, it can simply use the re-
source’s name to access it. However, ambient authority
makes it difficult to understand and control the potential
effect of executing a script. First, the authority of a script
is not easily deducible from its code, a problem that is
exacerbated when the script invokes other scripts or ex-
ecutables. Second, commodity operating systems do not
provide easy mechanisms to limit authority of an execu-
tion context, for example, by allowing a user to temporar-
ily restrict permissions in a fine-grained way.

Authority in SHILL is controlled by capabilities. In or-
der to access a resource, a SHILL script must have a capa-
bility for that resource. SHILL scripts can only acquire ca-
pabilities as arguments provided by the user, or by deriv-
ing them from other capabilities (e.g., using a directory
capability to acquire a capability for a file in the direc-
tory). These restrictions, known as capability safety, lie
at the heart of the security of SHILL scripts. Capability
safety makes it possible for users to control the authority
of SHILL scripts they invoke (Goal 1).

Figure 3 presents a snippet of SHILL code that demon-
strates how SHILL scripts use capabilities. It defines a
function find jpg for recursively finding all the files with
extension .jpg within a given directory. Argument cur is
a capability for either a file or a directory. In contrast
with standard scripting languages, cur is not a string that
names a file, but is a capability that denotes it, much like
a file descriptor. If cur is a file capability and the name
of the file ends with .jpg, then the script uses the built-in
function path to get the string for the path to the file,2 and

2The library function has ext also uses path.

1 find jpg = fun(cur,out) {
2 # if cur is a file with extension jpg,
3 # output its path to out.
4 if is file(cur) && has ext(cur, ''jpg'') then
5 append(out, path(cur));
6

7 # if cur is a directory, recur on its contents
8 if is dir(cur) then
9 for name in contents(cur) {

10 child = lookup(cur, name);
11 if !is syserror(child) then
12 find jpg(child, out);
13 }
14 }

Figure 3: SHILL script snippet to find .jpg files

appends it to the pipe or file capability out (lines 4–5).
If cur is a directory capability, then the built-in func-

tion contents is used to get the list of names of children
of cur. For each child, the script calls lookup(cur, name)
to obtain a capability for the child (line 10), which is then
used in a recursive call to find jpg (line 12).

Conceptually, SHILL capabilities correspond to oper-
ating system representations of resources, such as file
descriptors, and built-in functions such as append and
lookup are wrappers for the corresponding system calls.

SHILL enforces capability safety by restricting the ex-
pressiveness of the scripting language. While SHILL of-
fers full-fledged language features and rich libraries,
comparable to other scripting languages, the built-in
functions for using resources require capabilities as ar-
guments. In addition, SHILL does not have mutable vari-
ables and capabilities are not serializable. This means
that SHILL scripts cannot store or share capabilities
through memory, the filesystem, or the network. For con-
trolled sharing of capabilities, SHILL provides wallets,
capabilities for packaging and managing collections of
capabilities. We discuss wallets further in Section 2.4.1.

SHILL scripts provide the same protection from con-
fused deputy attacks [12] as traditional capability sys-
tems. Furthermore, filesystem operations that produce
new capabilities (such as lookup) do not allow scripts to
arbitrarily traverse the filesystem. For instance, a script
cannot use the capability for the current directory cur and
lookup(cur,”..”) to obtain the parent directory of cur.

2.2 Contracts
Capability safety makes it possible to limit the author-
ity granted to a SHILL script by carefully selecting what
capabilities to pass as arguments. Unfortunately, needing
to pass capabilities explicitly makes it harder for script
users to deduce how to use scripts and compose them to

complete more complicated tasks. At its core, this is a
problem of defining the script’s interface: how does the
script communicate what resources it requires and how it
will use those resources?3

SHILL addresses these issues by providing expressive,
fine-grained and enforceable interfaces for scripts (Goal
2) following the Design by Contract paradigm [23, 24].
Every function that a SHILL script exports (i.e., makes
available to users of the script) is accompanied by a con-
tract that describes the arguments the function expects
and the result it returns. For example, the following snip-
pet is a contract for the find jpg function from Figure 3:

provide find jpg :
{cur : is dir ∨ is file, out : is file}→ void;

The provide keyword indicates that the function
find jpg is exported. The contract for the function is
{cur : is dir ∨ is file, out : is file}→ void. Each function
contract has two parts: the precondition and the post-
condition. The precondition of our example states that
find jpg takes two arguments: a capability cur that is ei-
ther a directory or a file capability, and a file capability
out. Following Unix convention, file capabilities include
capabilities for files, pipes, and devices. The postcondi-
tion void means that no value is returned.

The precondition of the contract above describes what
kind of capabilities find jpg needs, but does not indicate
how the function intends to use these capabilities. SHILL
allows us to give a more precise contract for find jpg:

provide find jpg :
{cur : dir(+contents, +lookup, +path) ∨ file(+path),
out : file(+append)}→ void;

This version specifies not only what kind of capabili-
ties the function consumes but also what privileges it re-
quires on these capabilities. Each privilege, such as +path
or +contents, corresponds to an operation on a capabil-
ity. A capability contract with a set of privileges restricts
what operations that capability can be used for.

Some operations on capabilities, such as lookup,
produce more capabilities. Capability contracts
can specify the privileges a script should have on
these derived capabilities. For example, privilege
+lookup with { +path, +stat } indicates that any capabili-
ties derived using the lookup operation should only have
the +path and +stat privileges. When a privilege confers
the right to derive new capabilities but does not come
with a modifier (such as the +lookup privilege in the
contract for find jpg), the derived capability has the same
privileges as its parent capability.

Each contract establishes an agreement between two

3Traditional shell scripting languages such as Bash or Python also
suffer from these issues, but the use of ambient authority masks them:
scripts typically receive much more authority than needed.

parties: the provider of the value with the contract and
the value’s consumer. As part of the agreement, each
party promises to live up to its contractual obligations. In
this way, a contract both describes a guarantee one party
provides and a requirement the other party demands. For
function contracts, the consumer’s obligations are to sup-
ply function arguments that satisfy the precondition, and
the provider must produce a result that satisfies the post-
condition. For capability contracts, the provider agrees to
provide a capability of the appropriate kind with at least
the specified privileges while the consumer promises to
use the capability as if it has at most the specified priv-
ileges. For example, according to the find jpg contract,
users of find jpg must supply a file capability that per-
mits the append operation for the out argument, while
find jpg itself promises not to call other operations on the
capability, such as read.

The SHILL runtime checks whether parties live up to
their obligations by monitoring execution and checking
that values are used in accordance with their contracts.
For example, when find jpg is called with a capability
for a directory and a capability for the output file, the
body of find jpg does not receive the capabilities them-
selves. Instead, each contract wraps the underlying capa-
bility with a proxy. These proxies enforces the contracts
for cur and out by intercepting calls to operations on the
capabilities and allow them only if permitted by the con-
tract. If the body of find jpg attempts to perform an oper-
ation that isn’t permitted—such as reading the contents
of out or unlinking cur—the proxy will indicate that a
contract violation has occurred. If a contract is violated,
the SHILL runtime aborts execution and, to help with au-
diting and debugging, indicates which part of the script
failed to meet its obligations.

2.3 Securing arbitrary executables

SHILL security guarantees must be completely enforced:
even if a script calls other scripts or runs arbitrary exe-
cutables, its authority should be restricted to its capabili-
ties, and it should meet its contract obligations (Goal 3).
When SHILL scripts invoke only other SHILL scripts, we
achieve SHILL’s security guarantees easily because of the
language’s semantics. However, scripts also invoke exe-
cutable programs.

To ensure that these programs cannot violate SHILL’s
security guarantees, SHILL scripts may only invoke ex-
ecutables inside a capability-based sandbox. When a
sandbox is created, it is given a set of capabilities. The
SHILL sandbox limits the authority of the sandboxed exe-
cutable to the authority implied by the set of capabilities.

Scripts can invoke an executable in a sandbox by call-
ing the built-in function exec. For example, the following
snippet executes the file jpeginfo in a sandbox with the

arguments -i and a given file:

exec(jpeginfo, [''jpeginfo'',''-i'',file], stdout = out,
extras = [libc,libjpeg])

The exec function has two required arguments. The
first is a file capability with the +exec privilege. The sec-
ond is a list of string arguments to provide to the exe-
cutable. SHILL programmers can also provide as argu-
ments to executables capabilities for files or directories
instead of string representations of their paths. In this
case, the path to the given file is passed to the executable
as an argument. The exec function also takes some op-
tional arguments, including capabilities to use for stan-
dard input, output, or error (stdout = out), and extra ca-
pabilities needed by the program (extras = [libc,libjpeg]).
This set of extra capabilities is often quite large. In Sec-
tion 2.4.1, we describe abstractions to help manage ca-
pabilities for sandboxes.

SHILL sandboxes enforce a capability-based manda-
tory access control (MAC) policy on the sandboxed exe-
cution. For example, the sandbox for jpeginfo allows ac-
cess only to resources indicated by capabilities passed
as arguments to exec (which, for the jpeginfo example
above, are the jpeginfo, file, out, libc, and libjpeg files and
directories). Moreover, if any of these capabilities comes
with a contract, the MAC policy further limits access to
the resource according to the capability’s contract.

This capability-based MAC policy is enforced in ad-
dition to the operating system’s discretionary access con-
trol (DAC) policies: an operation on a resource by a sand-
boxed execution is permitted only if it passes the checks
performed by the operating system based on the user’s
ambient authority and is also permitted by the capabili-
ties possessed by the sandbox. Note that sandboxed ex-
ecutables never possess capabilities that allow them to
circumvent the MAC policy. For example, no sandboxed
executable has a capability to unload kernel modules, in-
cluding the module that enforces the MAC policy. Sec-
tion 3.2 describes how we implement capability-based
sandboxes using the TrustedBSD MAC framework.

2.4 Writing SHILL scripts
SHILL’s security benefits come at the cost of extra effort
to write scripts. Nonetheless, we strive to make it easy
to write SHILL scripts while obtaining stronger security
guarantees than traditional shell scripting languages. To
make it easier to write scripts, SHILL offers security ab-
stractions such as capability wallets and pushes security
concerns to the interfaces between scripts.

2.4.1 Security abstractions

SHILL requires that any access of a protected resource
requires an appropriate capability. However, even sim-

1 provide jpeginfo :
2 {wallet : native wallet, out : file(+write,+append),
3 arg : file(+read,+path)}→ void;
4

5 jpeginfo = fun (wallet,out,arg) {
6 jpeg wrapper = pkg native(''jpeginfo'',wallet);
7 jpeg wrapper([''-i'',arg],stdout = out);
8 }

Figure 4: Executing jpeginfo in a sandbox using wallets

ple executable programs require access to a surprising
number of files. For example, executing cat in a sand-
box requires providing eight capabilities to libraries and
configuration files in addition to capabilities for the exe-
cutable itself and the input and output.

Consider a SHILL script that executes cat in a sand-
box. One can imagine a contract that requires a separate
argument for each of the eight capabilities that cat re-
quires. While precise, such a contract imposes a signifi-
cant burden on both the script writer (since the need for
these capabilities will be exposed in the interface for the
script) and the script user (who will need to supply these
capabilities individually).

Another possibility is a contract that takes important
capabilities separately (e.g., for the executable and the
input and output) and takes all other capabilities in a list.
Although succinct, this contract burdens the script’s user,
who has no idea what capabilities should be in this list.

We introduce capability wallets as a mechanism to au-
tomate and simplify the discovery, packaging, and man-
agement of capabilities that sandboxes need to run exe-
cutables. Conceptually, a capability wallet is a map from
strings to lists of capabilities. To reduce the burden on
script writers, SHILL provides wallet contracts, which de-
scribe contracts for the capabilities associated with indi-
vidual keys or groups of keys. To reduce the burden on
script users, SHILL provides library functions to automate
the collection and packaging of capabilities into wallets.

Figure 4 shows a script that uses a capability wal-
let to create a sandbox for the program jpeginfo. The
first argument to the jpeginfo function has the contract
native wallet (line 2). A native wallet is a particular kind
of capability wallet that can be built using functions from
SHILL’s standard library. It collects together the capa-
bilities needed to invoke executables and can be used
with other functions from the SHILL standard library that
present a familiar path-based interface for identifying
and running executables. The capabilities in a wallet are
derived from capabilities the user explicitly grants to the
script. Thus despite its path-based interface, a native wal-
let is still capability safe.

This script uses one of the standard library functions,

pkg native, to create a wrapper containing all of the ca-
pabilities needed to run the jpeginfo executable in a
sandbox (line 6). The script then calls the wrapper, sup-
plying the executable arguments and input and output ca-
pabilities (line 7).

SHILL’s standard library comes with a rich collection
of functions that construct and manipulate wallets, wal-
let contracts and wallet-derived sandboxes. Section 3.1.4
presents these utilities in further detail.

2.4.2 Pushing security to interfaces

SHILL’s contracts allow the programmer to separate the
security specification of a script from the implementa-
tion of its functionality (Goal 4). The SHILL runtime en-
sures that contracts are enforced, removing the need for
defensive code that checks and protects the use of capa-
bilities. Consider the find jpg function from Figure 3: the
implementation is simple, and the security guarantee is
provided by its contract. This separation makes it possi-
ble to strengthen or relax a script’s security guarantees
by modifying its contract. Indeed, in Section 2.2 we saw
two different contracts for the find jpg function, one of
which provides a more precise security guarantee.

SHILL’s contract system is rich and expressive, allow-
ing precise specifications of security guarantees. For ex-
ample, users can define their own contracts by creating
contract combinators and user-defined predicates written
in SHILL itself.

SHILL’s contracts can also be used to write security
specifications that provide different guarantees to differ-
ent script users. Consider the script in Figure 5. This
script recursively finds files and performs an action on
these files. (It is more general than the find jpg script of
Figure 3.) The function find takes three arguments: a file
or directory capability cur, a function filter that is used
to select files, and a function cmd to apply to all se-
lected files. Lines 5–16 implement find’s functionality.
Note that this code is straightforward, and does not di-
rectly address security concerns.

Lines 1–3 define the contract for find, using a
bounded parametric-polymorphic contract. The poly-
morphic contract declares that for any contract X, the
function find can be called with arguments cur, filter, and
cmd such that cur satisfies contract X, filter satisfies con-
tract X→ is bool (i.e., filter is a function that expects a
value that satisfies X and returns a boolean), and cmd
satisfies contract X→ void (i.e., cmd is a function that
expects a value that satisfies X and returns no value).

The polymorphic contract is bounded because the con-
tract X on capability cur that the caller provides must
have at least the privileges +lookup and +contents. More-
over, the contract requires that find can use only the
+lookup and +contents privileges of the cur argument or

1 provide find :
2 forall X with {+lookup,+contents} .
3 {cur : X, filter : X→ is bool, cmd : X→ void}→ void;
4

5 find = fun(cur, filter, cmd) {
6 if is file(cur) && filter(cur) then
7 cmd(cur);
8

9 # if cur is a directory, recur on its contents
10 if is dir(cur) then
11 for name in contents(cur) {
12 child = lookup(cur, name);
13 if !is syserror(child) then
14 find(child, filter, cmd);
15 }
16 }

Figure 5: A find script with a polymorphic contract

derived capabilities, even though contract X may specify
more privileges. Importantly, the contracts for arguments
filter and cmd allow these functions to use all of the priv-
ileges that X specifies. In essence, the contract of find dy-
namically seals [28] the argument cur as it flows into the
body of the function through contract X, and unseals it as
it flows out to the functions filter and cmd.

The contract on find allows clients to use find in dif-
ferent ways. For example, one client may use it with a
filter that examines file creation times (which requires the
+stat privilege). Another client may use find with a filter
that inspects a file’s name (which requires +path, but not
+stat). For both clients, the contract guarantees that the
implementation of find itself cannot use either the +stat
or +path privileges, even though it invokes the functions
filter and cmd.

2.5 Interaction with ambient authority
Figures 3, 4, and 5 show SHILL scripts that consume and
use capabilities. But where do capabilities come from?
SHILL is intended for use with commodity operating sys-
tems, and so we must provide a mechanism to transi-
tion from the ambient world of the operating system to
SHILL’s capability-safe world (Goal 5).

To that end, in addition to the capability-safe scripts
we have described so far, users of SHILL scripts write
ambient scripts which inherit the authority of the in-
voking user and are not capability safe. Ambient scripts
are used to create capabilities and pass them to func-
tions that capability-safe scripts provide. Consequently,
the language of ambient scripts is extremely restricted:
ambient scripts contain straight line code that can im-
port capability-safe scripts, create capabilities for re-
sources using file paths and other global names, and call

1 #lang shill/ambient
2

3 require shill/native;
4 require ''jpeginfo.cap'';
5

6 root = open-dir(''/'');
7 wallet = create wallet();
8 populate native wallet(wallet,root,
9 ''~/Downloads/jpeginfo'',

10 ''/lib:/usr/local/lib'',
11 pipe factory);
12

13 dog = open-file(''~/Documents/dog.jpg'');
14 jpeginfo(wallet,stdout,dog);

Figure 6: Ambient script to call jpeginfo

functions exported by capability-safe scripts. Ambient
scripts are brief and delegate all interesting tasks to the
capability-safe scripts they import. Also, capability-safe
scripts cannot import ambient scripts, which ensures that
capability-safe scripts cannot use ambient scripts to ob-
tain additional capabilities. Ambient scripts must reason
carefully about their interaction with untrusted scripts.
Contracts and capabilities help with this.

Figure 6 shows an ambient script that creates ap-
propriate capabilities and then invokes the jpeginfo
function from the script in Figure 4. The annotation
#lang shill/ambient on line 1 indicates that this is an
ambient script.4 Line 3 loads a SHILL library script
that helps create capability wallets. Line 4 loads the
capability-safe script from Figure 4.

Lines 8–11 create an appropriate capability wallet to
run jpeginfo by calling the trusted standard library
function populate native wallet. Line 13 creates a capa-
bility for ~/Documents/dog.jpg. The capability has all
privileges that the invoking user is allowed for this file;
when the capability passes through a capability contract,
it loses all privileges except those stated in the contract.
Line 14 invokes jpeginfo with the capability wallet, a ca-
pability to standard out, and the capability to dog.jpg.

3 Implementation

We have implemented a prototype of SHILL as a ker-
nel module and set of userspace tools for FreeBSD 9.2.
The userspace tools include the SHILL compiler, runtime,
and standard library. The kernel module implements
capability-based sandboxes and provides capability-safe
versions of several POSIX system calls.

4Capability-safe scripts have the annotation #lang shill/cap on the
first line; we omitted this annotation in Figures 3, 4, and 5.

3.1 Language
We implement the SHILL language as an extension to
Racket [9] using Racket’s macro system and tools for
building languages [39]. Prototyping SHILL in this way
allows us to use Racket functionality where it meets our
security requirements. In particular, we used Racket’s
contract mechanism to implement SHILL contracts.

A distinguishing feature of SHILL is capability safety:
access to resources occurs only through capabilities, and
creation of capabilities is limited. To achieve capability
safety at the language level, we (1) provide language-
level capabilities and capability contracts; (2) restrict
the expressiveness of the language; and (3) provide a
capability-based language runtime for SHILL.

3.1.1 Capabilities and their Contracts

Capabilities in the SHILL language are object-like val-
ues that encapsulate low-level capabilities such as file
descriptors or sockets. Each operation on a capability is
implemented by calling the corresponding operation on
the low-level capability. Different kinds of capabilities
support different operations. For example, supported op-
erations on files and pipes include reading, writing, and
changing modes. Directories also have capabilities for
listing, adding, or removing directory entries. Each oper-
ation has a corresponding privilege that can be present or
absent on a given capability. In total, SHILL has twenty-
four different privileges for filesystem capabilities and
seven different privileges for sockets. Socket privileges
are further refined by connection type.

We chose privileges and operations to align closely
with the operations that our capability-based sandbox
can interpose on, so that we can ensure that giving a ca-
pability to a sandbox conveys the same authority as giv-
ing that capability to a SHILL script. There are two kinds
of SHILL capabilities that do not encapsulate a system re-
source directly: the pipe factory and socket factory capa-
bilities. These capabilities encapsulate, respectively, the
right to create new pipes or sockets. The pipe factory ca-
pability has a create operation that returns a pair of pipe
ends. Each pipe end is a file capability. In our prototype
implementation, SHILL scripts cannot create or manipu-
late sockets directly (which can be addressed by adding
built-in functions for socket operations to the language).
We do restrict a sandbox’s permitted socket operations:
a sandbox must possess a socket factory capability to be
allowed to create and use sockets.

We implement SHILL contracts using Racket contract
combinators [8, 7] that create proxies [38] for capabil-
ities, allowing us to interpose on operations and check
privileges before allowing an operation. These proxies
also store information about the privilege restrictions
each contract imposes.

Resource Language Sandbox
Directories, files, links Capabilities Capabilities
Pipes Capabilities Capabilities
Character Devices Capabilities Capabilities†

Sockets (IP,Unix) Capabilities Capabilities
Sockets (other) Denied Denied
Processes ulimit‡ Confinement
Sysctl Denied Read-only
Kernel environment Denied Denied
Kernel modules Denied Denied
POSIX IPC Denied Denied
System V IPC Denied Denied

Figure 7: System resources and how each is protected in
the SHILL language and capability-based sandboxes.
†: In our prototype, character devices are only partially controlled by
capabilities, see Section 3.2.3.
‡: SHILL allows calls to the exec function to specify ulimit parameters
for the child process.

3.1.2 Restricting the SHILL language

To achieve capability safety in SHILL, we carefully
choose which language features and libraries of Racket
are available in SHILL. We allow access to certain Racket
libraries, such as the regular expression library, but pre-
vent access to all others, including Racket’s system li-
brary and Racket’s macro system. SHILL scripts are al-
lowed to import only SHILL capability-safe scripts.

The ambient SHILL language (see Section 2.5) has fur-
ther restrictions: it may not do anything other than import
capability-safe SHILL scripts, create strings and other
base values, define (immutable) variables, and invoke
functions. However, unlike the capability-safe SHILL lan-
guage, it may create capabilities using ambient authority.

3.1.3 Capability-based runtime

We implemented a capability-based language runtime for
SHILL that provides operations to access files and other
resources through file descriptors. (The Racket libraries
for accessing files and other resources rely on ambient
authority, and are thus not suitable for our use.) File de-
scriptors provide unforgeable tokens that can serve as
low-level capabilities for directories, files, links, pipes,
sockets, and devices. Our capability-based runtime pro-
vides wrappers for the *at family of system calls which
provide a file-descriptor based interface to common op-
erations like opening, reading, and writing files. Our
runtime further restricts these system calls by requir-
ing that arguments that specify sub-paths contain only a
single component. For example, the pathname argument
to openat may be alice but not alice/dog.jpg or
../bob. Our runtime also provides wrappers for stan-
dard system calls which can be used by SHILL’s ambient
language to create capabilities for system resources.

Most but not all FreeBSD system calls that manipu-
late the filesystem have a version that consumes file de-
scriptors rather than paths. The linkat, unlinkat, and
renameat system calls use file descriptors to designate
target directories, but rely on paths to designate files.
Thus, a call to linkat can not be guaranteed to link to
the correct file without risking a time-of-check-to-time-
of-use vulnerability. Our kernel module adds three sys-
tem calls to address these deficiencies: flinkat, which
installs a link to a file in a directory given file descriptors
for both the file and the directory; funlinkat, which
takes a name and file descriptors for a file and a direc-
tory and removes the link at the given name if it refers to
the file; and frenameat, which is similar to funlinkat
but also installs a link to the file in a target directory. The
module also provides a version of mkdirat that returns
a file descriptor for the newly created directory.

We also add a new path system call that attempts to
retrieve an accessible path for a file descriptor from the
filesystem’s lookup cache. SHILL uses this system call to
provide a relatively robust mechanism to translate SHILL
capabilities into paths to provide as arguments to sand-
boxed executables. If the path system call fails, SHILL
uses the last known path at which the file was accessible.

Our prototype implementation of SHILL does not pro-
vide support for all system resources. Interaction with re-
sources that do not correspond to capabilities is either re-
stricted or denied entirely. Figure 7 lists system resources
and how SHILL controls access to these resources in the
language and in capability-based sandboxes. There is no
fundamental obstacle to providing capability support for
all resources, though doing so would require additional
modifications to the system call interface. For example,
we would need to provide a low-level capability for pro-
cesses, similar to Capsicum’s process descriptors [43].

3.1.4 Standard Library

SHILL’s standard library provides a number of capability-
safe scripts that help programmers write SHILL scripts.
The filesys script provides capability-based functions
that emulate common tasks such as resolving paths and
symlinks. The io script provides printf-like wrappers
around write and append for formatted output. The
contracts script provides abbreviated definitions of com-
mon contracts. For example, a programmer can specify
the contract readonly rather than the more verbose

dir(+read-symlink,+contents,+lookup,
+stat,+read,+path) ∨ file(+stat,+read,+path).

Capability wallets Recall that capability wallets are
maps from strings to lists of capabilities that help auto-
mate and simplify the discovery, packaging, and use of

capabilities to invoke executables in sandboxes. SHILL
provides functions for creating and using capability
wallets. For example, the native script in the standard
library provides two functions for using native wal-
lets to invoke executables (as in Figures 4 and 6):
populate native wallet and pkg native.

Function populate native wallet helps create a native
wallet. Its arguments include path specifications for
where to search for executables and libraries (i.e., colon-
separated strings, analogous to environment variables
$PATH and $LD_LIBRARY_PATH), and a directory ca-
pability to use as a root for the path specifications. In
addition, it takes a map (of strings to lists of strings)
from known libraries to the file resources those libraries
depend on. Function populate native wallet uses the di-
rectory capability to resolve the path specifications (i.e.,
converts the lists of strings to lists of capabilities),
and places these capabilities in a native wallet. It also
resolves the known dependencies (i.e., the map from
known libraries to the file resource path names) into a
map from strings to lists of capabilities, and places the
resolved map into the native wallet.

Function pkg native takes a native wallet and a file
name (of an executable file) and searches the path ca-
pabilities in the native wallet for a capability for the exe-
cutable. The function then invokes ldd to obtain a list of
libraries that the executable depends on, and searches the
library-path capabilities for capabilities for the required
libraries. Once these capabilities are gathered, pkg native
uses the map of known dependencies to gather addi-
tional capabilities needed to run the executable. Function
pkg native then returns a function that encapsulates a call
to exec with all capabilities needed to run the executable.
Figure 4 shows an example script that uses pkg native.

3.2 Capability-based sandbox

The SHILL sandbox is implemented as a policy module
for the TrustedBSD MAC Framework [41] (hereafter,
“the MAC framework”). The MAC framework allows
FreeBSD’s access control mechanisms to be extended
with third-party mandatory access control policies by
mediating access to sensitive kernel objects and invok-
ing access control checks specified by third-party policy
modules. The framework also provides a policy-agnostic
mechanism for attaching security labels to kernel objects.
Mechanisms with similar functionality are available on
Linux and Apple’s OS X.

3.2.1 Session lifecycle

Each process executing in a SHILL sandbox is associated
with a session. Processes in the same session share the
same set of capabilities and can communicate via sig-

nals. Processes spawned by a process in a session are
by default placed in the same session. However, sessions
are hierarchical: a sandboxed process inside session S1
can spawn a process inside a new session S2, which has
fewer capabilities that S1. This allows SHILL-aware exe-
cutables to further attenuate their privileges.

New sessions are created by invoking the system call
shill_init, which creates a session and associates it
with the current process. A new session initially has no
capabilities of its own. Capabilities possessed by the par-
ent session can be granted to the new session until the
process invokes the shill_enter system call. Once
shill_enter is called, the session allows only opera-
tions permitted by capabilities it was granted explicitly.

3.2.2 From capabilities to MAC labels

Each system resource protected by a SHILL capability
corresponds to an underlying kernel object: a filesystem
vnode, pipe, device, or socket. Using the MAC frame-
work’s ability to attach labels to kernel objects, SHILL
labels these kernel objects with a privilege map: a map
from sessions to sets of privileges. A privilege map
records the privileges that each session has for the given
kernel object. Privileges in the privilege map correspond
directly to privileges of SHILL capabilities.

When a SHILL script calls exec, the SHILL runtime sets
up a sandbox by forking a new process, creating a new
session, and granting the session the capabilities passed
to exec. It then calls shill_enter before transferring
control to the executable.

When a sandboxed process invokes a system call rele-
vant to a resource protected by SHILL, we use the privi-
lege map for that resource to check whether the process’s
session has sufficient privileges for the operation. If there
are insufficient privileges, the system call aborts with an
error but the process is otherwise allowed to continue.

Derived capabilities In the SHILL language, some op-
erations on SHILL capabilities yield derived capabilities.
For example, using a directory capability, a script might
obtain capabilities for children of the directory, or might
obtain a capability for a new file created in that directory.
In the sandbox, we track these derived capabilities by up-
dating privilege maps in response to operations on kernel
objects. To enable this, we extended the MAC framework
with two additional hooks: mac_vnode_post_lookup
and mac_vnode_post_create. These entry points
are invoked after a lookup or create operation com-
pletes successfully, and allow the SHILL policy mod-
ule to update the privilege map on the resulting vnode.
For example, if session S has privilege +lookup with
{+stat,+path} on a vnode for a directory d, and a pro-
cess in that session successfully invokes system call

openat(d, "child", flags), then the SHILL policy
module updates the privilege map for the vnode for file
child to add privileges +stat and +path for session S.

Path traversal To achieve fine-grained confinement in
the filesystem, SHILL scripts are not permitted to follow
the “..” entry of a file or directory capability. However,
simply disallowing use of “..” in SHILL’s capability-
based sandboxes would break many existing programs.
Instead, the sandbox allows any lookup operation on a di-
rectory if the session has the +lookup privilege, but only
propagates privileges when the lookup would have been
permitted in the SHILL language, that is, when the direc-
tory entry requested is not “..”.5

Example Consider a sandboxed process attempting to
call open("../alice/dog.jpg", O_RDONLY) from
the current working directory /home/bob. This system
call invokes a series of low-level lookup operations on
filesystem objects to resolve the path and create a file de-
scriptor for the designated resource.

Figure 8 depicts the process of completing these oper-
ations in a SHILL sandbox. Shaded boxes around nodes
in the file system denote privileges held by the current
session. The current working directory is indicated with
a solid arrow. Dashed arrows represent low-level lookup
operations, and a dashed box around a node represents
privileges propagated in response to a lookup operation.

In the left diagram, the current session has a capability
to the vnode corresponding to /home/alice and a capa-
bility to the current working directory. The first operation
(lookup “..” in /home/bob) is permitted because the
process has the +lookup privilege, but privileges are not
propagated to the vnode for /home. Thus, the second op-
eration (lookup alice in /home) fails because the ses-
sion does not have the necessary privileges. The open

system call returns EACCES to indicate that the process
had insufficient privileges.

The right diagram considers the same scenario, but
where the session also has a +lookup privilege to
the directory /home. In this case, the session is per-
mitted to look up alice in /home. The final oper-
ation (lookup dog.jpg in /home/alice) also suc-
ceeds. These two lookups propagate privileges from
the parent nodes to the results of the lookup. Look-
ing up dog.jpg in /home/alice grants the session
the privilege +read on the vnode representing dog.jpg,
since the session had privilege +lookup with {+read}
on the vnode for /home/alice. Thus, the call
open("../alice/dog.jpg", O_RDONLY) succeeds.

5We also do not propagate privileges when the directory entry is
“.”, since this can lead to privilege amplification. For example, if ses-
sion S has only the privilege +lookup with +stat on directory d, then call-
ing openat(d, ".", flags) would give S the +stat privilege on d.

...

/ (root directory)

usr ...

+lookup with {+read}

home

+lookupbobalice

dog.jpg

cwd

+read...

...

/ (root directory)

usr

...

...

+lookup+lookup with {+read} bobalice

dog.jpg

cwd

...

+lookup home

...

Figure 8: Resolving system call open("../alice/dog.jpg", O_RDONLY) in a capability-based sandbox. Left: the
session has privileges for /home/alice and /home/bob, but not /home, so the operation fails. Right: the session also
has a lookup privilege for /home, so the operation succeeds and the lookup privilege on /home/alice is propagated
to /home/alice/dog.jpg.

Note that unlike SHILL scripts, sandboxed executables
are vulnerable to confused deputy attacks if they allow
clients to specify resources with paths rather than, e.g.,
file descriptors. However, the authority of the sandboxed
execution is still limited by the capabilities it is granted.

Avoiding privilege amplification In the SHILL lan-
guage, capabilities both designate resources and confer
privileges. As a consequence, it is possible to have two
separate capabilities to the same resource with different
privileges. These separate capabilities may confer less
privilege than a single capability with the combined priv-
ileges. For example, consider a pair of capabilities to cre-
ate a network socket, one with sufficient privileges to
send but not receive messages at a particular port, and
one with sufficient privileges to receive but not send mes-
sages on the same port. Because only a single socket
can be bound to a port, a program with these capabili-
ties must choose to either send or receive messages.

Since in the SHILL language, scripts cannot combine
capabilities, possessing multiple capabilities for the same
resource does not lead to privilege amplification. In the
capability-based sandbox, however, to avoid privilege
amplification the sandbox must prevent two separate ca-
pabilities to the same object from being combined to al-
low additional operations.

For file system operations that create new objects (e.g.,
creating new files or directories), SHILL requires that
a session is never granted conflicting privileges to the
same object. For example, if session S currently has priv-
ilege +create-file with {+read,+stat,+path} for a directory
d, (i.e., the privilege to create read-only files), and due to
a lookup from the parent directory we want to propagate
privilege +create-file with {+write}, we would not merge
these privileges, i.e., we would not give S the privilege
+create-file with {+write,+read,+stat,+path}. While more
sophisticated techniques to track privileges are possible,
we have found that this conservative approach to prevent

privilege amplification works well in practice, and does
not break functionality of any of our case studies.

Process interaction The SHILL language provides lim-
ited support for operations on processes: SHILL does not
have capabilities to control the creation of processes, pro-
cess synchronization, interprocess communication, etc.

Within capability-based sandboxes, we enforce a sim-
ple security policy for operations related to processes:
processes in a session can only interact with processes
in the same session or a descendent session. A process
in a sandbox cannot debug, send signals to, or wait for a
process outside of its session.

Debugging SHILL provides several tools for debugging
processes running in SHILL sandboxes. First, there is a
command-line tool for running a single shell command
with capabilities specified in a policy file. Second, for all
SHILL sandboxes, logging can be enabled and viewed by
privileged users. The log records all of the capabilities
and privileges granted during a session in addition to all
operations that were denied because of insufficient priv-
ileges. Using the command-line tool, a session can be
created in debugging mode, which automatically grants
the necessary privileges if an operation would fail. We
found that running programs in a debugging sandbox
and then viewing the logs was a useful starting point for
identifying necessary capabilities to provide to a SHILL
script. However, as we developed additional standard li-
brary support to run common executables, this became
less necessary. In most cases, the utilities in the standard
library automate the retrieval and collection of capabili-
ties needed to run an executable.

3.2.3 Limitations

SHILL’s capability-based sandboxes rely on the MAC
framework to implement access control checks based on

capabilities. Thus, the granularity of the MAC frame-
work’s mechanism determines the granularity at which
our sandboxes protect resources. For example, the MAC
framework exposes a single entry point for operations
that write to filesystem objects, so we cannot distinguish
write and append operations. Conservatively, we enforce
that to write (or append) to a file, a session must have
both the +write and +append privileges for the file. (Note
that in SHILL scripts, privileges can be enforced at fine
granularity, since capability safety in scripts relies on
language abstractions, not on the MAC framework.)

The MAC framework does not interpose on read or
write operations on character devices. Thus, while the
SHILL language exposes stdin, stdout, and stderr

as file capabilities and enforces restrictions on how they
can be used, sandboxed processes can bypass these re-
strictions if one of these capabilities abstracts a pseudo-
terminal or other device. This limitation is not funda-
mental and can be resolved by adding entry points to the
MAC framework around unprotected operations. It can
be mitigated by not granting capabilities to such devices
to sandboxes.

4 Evaluation

We evaluate the expressiveness of SHILL through four
case studies: a grading script for a programming assign-
ment, a package management script for the GNU Emacs
editor, sandboxing the Apache web server, and a find and
execute task similar to the example in Section 2. We mea-
sure the performance of SHILL via case studies and mi-
crobenchmarks. Our evaluation indicates that (1) SHILL
is a practical security tool for typical system tasks, (2)
SHILL can provide fine-grained security guarantees when
scripts are used to compose untrusted software and, (3)
its performance cost is pay-as-you-go, i.e., weak security
guarantees incur little overhead.

4.1 Case studies
Grading submissions We used SHILL to securely
grade student submissions written in OCaml for an un-
dergraduate programming languages course. As a base-
line, we wrote a 61-line Bash script that compiles the
OCaml source code of each submission and runs the
compiled program against a test suite. Results of ex-
ecuting student submissions against the test suite are
recorded in a grading directory, one file per student.

With minimal effort, we secured this Bash script in a
SHILL sandbox. The capability-safe script that executes
the Bash script in a sandbox is 22 lines, of which 14 are
the contract for the script. The ambient script that invokes
capability-safe script is also 22 lines. The contract guar-
antees that the grading script can at most: read files in

directories containing student submissions and tests; cre-
ate, modify, and delete new files in a working directory
and the output directory; and access the system resources
needed to run the compiler and compiled programs.

To demonstrate the finer-grained guarantees of SHILL,
we also wrote a version of the grading script exclu-
sively in SHILL. The capability-safe grading script is 78
lines of code, of which six are the script’s contract. The
ambient script that invokes it is 16 lines. The SHILL
script provides all the security guarantees of the sand-
boxed Bash script, and also ensures that while grading
a student’s submission, no other student’s submission,
working-directory files, or results file can be accessed.

The capability-safe SHILL script was developed by
manually translating and modifying the original Bash
script. String-based references to files were replaced
with appropriate capabilities. Calls to programs like
gmake, diff, and ocamlrun were replaced with calls
to the SHILL standard library to package and execute
those programs. To enable this, the ambient script cre-
ates a native wallet initialized with a standard PATH and
LD_LIBRARY_PATH. Contracts for the capability-safe
SHILL script ensure that each student’s grading file is
isolated from other students and that students’ programs
can’t directly modify their grade file. These fine-grained
guarantees—which the Bash script does not provide—
are achieved by ensuring that the contract on the grading
directory allows only the creation of new append-only
files, and the functions that compile and execute a stu-
dent’s submission are given no capabilities to other stu-
dents’ grading files.

In developing this script, we debugged several cases
where the script had too few privileges to run success-
fully. In one case, we wrote too restrictive a contract for
the submissions directory, forgetting the +lookup privi-
lege. The resulting contract failure indicated which ar-
gument had insufficient privileges. After verifying that
this privilege was necessary and did not compromise the
security guarantees, we fixed the script. We encountered
two issues with sandboxed executables. First, the wal-
let used to launch executables was missing some neces-
sary capabilities: when trying to compile students’ sub-
missions, ocamlc reported that it was unable to read a
file in /usr/local/lib/ocaml. Investigating, we re-
alized that OCaml searches for libraries in this directory.
Adding the directory to the wallet as a dependency for
OCaml executables fixed the issue but revealed another:
ocamlyacc could not write to /tmp. After adding a ca-
pability to /tmp when invoking gmake, the script ran
successfully. To ensure isolation between different invo-
cations of gmake, we used a contract on the /tmp capa-
bility to specify that sandboxed processes can only read,
modify, or delete files or directories they create.

Package Management We used SHILL to write an in-
stallation script for GNU Emacs (similar to what may be
found in a package manager). The script provides func-
tions to download, compile, install, and uninstall Emacs.
Unlike a typical package manager, the script has a de-
tailed security interface for each function. For example,
only the function for downloading the source code can
access the network, and only the install function can
write to the intended installation directory. In addition,
the install function is restricted from reading, altering,
or removing any existing files in the installation direc-
tory, and the uninstall function’s contract gives a list of
files that it is permitted to remove. The package man-
ager comprises 114 lines of ambient code, and 91 lines
of capability-safe code, of which 45 specify contracts.

Apache web server To showcase how SHILL handles
networking applications, we used SHILL to develop a
sandbox for the Apache webserver, version 2.2. We
tested the performance of the web server by using the
Apache Benchmark tool to download a 50MB file served
by Apache five thousand times using up to 100 concur-
rent connections. In addition to its required libraries, the
script’s contract gives the webserver read-only access to
configuration files and web content directories, the abil-
ity to create and use sockets, and write-only access to log
files. The ambient script is 27 lines, and the capability-
safe script is 30 lines, of which 20 lines are contracts.

Find As another example of how programmers can use
SHILL to gradually strengthen the guarantees of scripts,
we developed two versions of a SHILL script for a find
and execute task. Our scripts find all files with extension
.c in the BSD source tree that contain the string “mac_”,
the prefix on entry points for the MAC framework. Com-
pleting this task requires visiting 57,817 files and invok-
ing grep on the 15,376 files with extension .c.

The simpler version is a SHILL script
that launches a sandbox for the command

find /usr/src -name "*.c" \
-exec grep -H mac_ {} \;

The ambient script is 11 lines and calls a 27-line
capability-safe script, of which 5 lines are contracts. The
contract ensures that the sandbox has access only to
/usr/src and files necessary to run find and grep.

The second version uses the find function (Figure 5)
to find files with the extension .c and invokes grep in a
sandbox for each matching file. In addition to the guar-
antees of the previous version, this script provides the
fine-grained guarantee that the files that grep operates
on are exactly the files selected by the find function. Note
that our first script does not provide this guarantee: paths
passed to grep may resolve to different files. The ambi-

ent script is 9 lines, and the capability-safe script is 60
lines, of which 11 are contracts.

4.2 Performance Analysis
Our prototype implementation focuses on providing fine-
grained security guarantees, and we have not yet opti-
mized performance. However, to verify that the perfor-
mance costs of SHILL are commensurate with the se-
curity guarantees, we use the case studies as bench-
marks. We also develop benchmarks for sub-tasks of
the Emacs installation script (download, untar, config-
ure, make, make install, make uninstall). For each bench-
mark, we derive a command line invocation to achieve
the same task as the case study outside of SHILL (if such
a command was not already part of the case study).

We measured the performance of each benchmark in
three different configurations. The “Baseline” configu-
ration executes the command on FreeBSD without the
SHILL kernel module installed. The “SHILL installed”
configuration executes the command with the kernel
module installed (but not active). The “Sandboxed” con-
figuration uses a SHILL script to create a sandbox for the
command. Where applicable, we also executed a “SHILL
version” of the case study that replaces the command.

We ran each configuration of each benchmark 50 times
and computed the mean time to completion along with
a 95% confidence interval. The performance measure-
ments were conducted on a six core, 3.33GHz Xeon
server with 6GB of RAM running FreeBSD 9.2. Fig-
ure 9 presents the results. We compare performance with
“Baseline” using a two-sided t-test on the difference in
mean run time. Statistical significance was determined at
the 0.05 level after a Bonferroni correction for multiple
hypothesis testing within each benchmark.

First, observe that the overhead of our system for pro-
grams that are not secured by SHILL scripts is negligi-
ble. Second, the slowdown for “Sandboxed” and “SHILL
version” configurations ranges from negligible to 1.21×,
except for a few extreme cases: the “Sandboxed” con-
figurations of the Download and Uninstall benchmarks
and the “SHILL version” of the Find benchmark. These
tasks are 1.73×, 6.61×, and 6.01× slower than the base-
line, respectively. We explore these high overheads be-
low. Third, the SHILL version of the package manage-
ment benchmark has no significant overhead and the
SHILL version of the grading script is only 1.13× slower,
despite the finer-grained guarantees these scripts provide.

Profiling To better understand the performance of
SHILL, we profiled the “SHILL version” configurations
of the Grading and Find benchmarks, and the “Sand-
boxed” configurations of Download and Uninstall. We
inserted instrumentation to measure the total execution

Grading Emacs Download Untar Configure Make Install Uninstall Apache Find

0
25
50
75

100
125

T
im

e
(s

)

Figure 9: Performance of SHILL for a variety of tasks. Running time is given for the “Baseline” (�), “SHILL installed”
(�), “Sandboxed” (4), and “SHILL version” (©) configurations. 95% confidence intervals are indicated by vertical
bars. Bars may be hidden by plotting symbols when confidence intervals are small. Configurations that differ signifi-
cantly from “Baseline” are filled (e.g., �).

time, Racket startup (which includes script compilation,
and starting the runtime), setup of sandboxes, and sand-
boxed execution for each benchmark. Figure 10 shows
the results. Remaining time (i.e., time not spent on
Racket startup, sandbox setup, or sandboxed execution)
is time spent executing SHILL scripts, including contract
checking. We used a Racket profiler [36] to estimate how
SHILL’s features affect the running time. Most time spent
executing SHILL scripts is in capability-safe scripts (more
than 99% for both Find and Grading) and in particular
checking contracts (86% for Find and 87% for Grading).
The contract on the result of pkg-native accounts for al-
most all contract checking time (92% and 93% of con-
tract checking time for Find and Grading respectively)
because it is checked once per sandbox. (The remaining
time for the Download and Uninstall benchmarks was in-
sufficient for the profiler to produce meaningful data.)

For these benchmarks, most time outside of sand-
boxed execution is spent enforcing security guarantees:
checking contracts and setting up sandboxes. The Grad-
ing benchmark creates 5,371 sandboxes, Find creates
15,292, Uninstall creates one, and Download creates two
(one for pkg-native and one for the executable, curl).
Grading and Find create many sandboxes, each of which
takes a relatively small amount of time to set up and
a relatively small amount of time to check the contract
from pkg-native. Racket startup cost is responsible for
the high overhead of Download and Uninstall. The high
overhead of Find is due to contract checking and sand-
box setup, but also due to high sandboxed execution
time. A small portion of the latter cost is due to over-
head on system call interposition for privilege checking
(see microbenchmarks below). We conjecture that the re-
maining cost stems from the high number of short-lived
sandboxes that Find creates, which causes contention be-
tween threads using privilege maps and the kernel’s asyn-
chronous cleanup of expired SHILL sandbox sessions.

Microbenchmarks To understand the overhead added
to system calls due to privilege checking during sand-
boxed execution (see Section 3.2.2), we evaluated mi-

Uninstall Download Grading Find
Total time 0.82 s 1.66 s 116.38 s 61.20 s
Racket startup 0.65 s 0.63 s 0.92 s 0.65 s
Sandbox

setup 0.01 s 0.01 s 6.98 s 18.04 s
execution 0.14 s 0.96 s 104.09 s 27.61 s

Remaining time 0.03 s 0.07 s 4.39 s 14.90 s

Figure 10: Performance breakdown of four benchmarks.

Operation SHILL Installed Sandboxed Difference
pread-1B 516 ± 80 ns 560 ± 64 ns 44 ± 102 ns
pread-1MB 199 ± 4 ms 202 ± 6 ms 3 ± 7 ms
create-unlink 13 ± 3 ms 14 ± 4 ms 1 ± 4 ms
open-read-close

1 lookup 3.7 ± 0.4 ms 4.0 ± 0.4 ms 0.3 ± .6 ms
5 lookups 5.3 ± 0.3 ms 6.4 ± 0.5 ms 1.1 ± 0.6 ms

Figure 11: Overhead of SHILL for microbenchmarks.

crobenchmarks for several representative system calls
under both the “SHILL installed” and “Sandboxed”
configurations. The pread-1B microbenchmark reads
one byte from an opened file; pread-1MB reads 1
megabyte. The create-unlink microbenchmark cre-
ates a new file, closes, and unlinks it. The open-read-
close benchmarks open a file, reads one byte, and closes
it. In one version of this benchmark, the path argument
to open has length one, and in the other it has length five
(i.e., the file is nested in 4 subdirectories).

We timed one million iterations of each microbench-
mark, except for pread-1MB, which was executed one
thousand times. Figure 11 shows the mean execution
time and 95% confidence intervals. All differences were
statistically significant. The overhead of executing sys-
tem calls in a SHILL sandbox ranges between 18%
(open-read-close, 5 lookups) and 1% (pread-1MB).
For the open-read-close benchmarks, further exper-
iments (not shown) indicate that overhead increases lin-
early in the length of the path (i.e., linearly with the num-
ber of lookup system calls required).

5 Related work

Much research is devoted to controlling the authority of
untrusted software and applying the Principle of Least
Privilege (POLP), spanning operating system design,
systems security, and programming languages.

Operating Systems Capabilities are a well-known
and effective mechanism to support POLP. Capability-
based operating systems [6] such as KeyKOS [11, 5],
EROS [34], Coyotos [33] and PSOS [29] use operating
system and hardware capabilities to limit the authority of
users and processes. Numerous microkernels inspired by
the L4 family [19] employ capabilities as an access con-
trol mechanism [4, 13, 18]. HiStar [44] and Asbestos [44]
track information flow to enforce fine-grained security
policies. SHILL is not an operating system and is built on
a commodity operating system. However, it shares simi-
lar goals and draws inspiration from these novel systems.
For instance, the source of certain kinds of capabilities in
KeyKOS is the command system: the only program in the
system with ambient access to a user’s directory. SHILL’s
ambient scripts serve the same purpose.

Capsicum [43] extends the FreeBSD operating system
with capabilities but requires programs to be rewritten
to use the capability-based interfaces in order to make
use of capability mode. By contrast, SHILL’s capability-
based sandbox does not require executables to be aware
of capabilities. In addition, SHILL capabilities are more
expressive than Capsicum capabilities; for example, a
SHILL capability can express the permission to create
files in a directory and delete only files that were created
with the capability.

Systems security Laminar [30] integrates operating
system and programming language abstractions to en-
force decentralized information flow control (DIFC). Its
high-level architecture resembles that of SHILL. How-
ever, Laminar provides fine-grained security only for
programs that use Laminar’s security abstractions, and
does not provide declarative security specifications.
Hails [10] uses declarative information-flow control poli-
cies as a mechanism for composing mutually distrusting
web applications. Unlike SHILL, it provides limited sup-
port for securing legacy applications. Flume [17] uses a
user-space reference monitor for DIFC at the granular-
ity of operating system abstractions. While both SHILL
and Flume can enforce security restrictions on untrusted
applications, SHILL uses capabilities and contracts rather
than DIFC labels.

A plethora of sandboxing tools have been de-
veloped for commodity operating systems, including
SELinux [20], Seatbelt [42], AppArmor [1], GrSecu-
rity [35], LXC [3], and Docker [2]. Unlike SHILL,

these sandboxes deny or grant access based on a profile
rather than a programmable capability-based interface.
Mbox [15] and TxBOX [14] create sandboxes with trans-
actional semantics that can reverse the effects of misbe-
having processes, but enforce strong isolation between
sandboxed processes and the rest of the system. Notably,
programs running in a SHILL sandbox are not isolated
from the rest of the system. For example, in our Apache
case study, concurrently executing programs can dynam-
ically add new web content or view logs as they are gen-
erated. Many of these sandboxes require root privileges,
but some are available to all users [15]. PLASH [32]
is a capability-based interactive shell for creating sand-
boxes in which to execute shell commands, similar to
SHILL’s exec. All of these tools lack the reasoning prin-
ciples SHILL provides for composing multiple sandboxes
together.

Programming languages The use of language-level
capabilities to support POLP has a long history [28].
The E programming language [26] is a seminal object
capability language, where capabilities are object refer-
ences. CapDesk [40, 37] is a desktop shell for launch-
ing applications written in E. Applications are granted
limited authority initially and can gain more capabilities
through powerboxes, which mediate requests for author-
ity from the application to the user. In contrast to SHILL,
CapDesk does not have a scripting interface and appli-
cations launched by CapDesk must be capability-aware
and designed to work with the CapDesk framework.

Joe-E [22] restricts Java to an object-capability-
safe subset. Similarly, Caja [27] introduces an object-
capability-safe subset of JavaScript. Maffeis et al. [21]
prove that these subsets are indeed capability safe. Un-
like other capability-safe languages, SHILL targets a par-
ticular domain (shell scripting) instead of general pro-
gramming and that it uses contracts to manage capabili-
ties instead of capability-based design patterns [26].

Acknowledgments

We thank Dan Bradley for his contributions to an early
version of this work, and Jennifer Kirk for her help with
statistical analysis. We are grateful to Leif Andersen,
Vincent St-Amour, and Matthias Felleisen for their help
profiling SHILL code. We thank Eddie Kohler, the Pro-
gramming Languages Group at Harvard, and the review-
ers for their helpful comments. Many thanks to Frans
Kaashoek for his thoughtful shepherding. This research
is supported by the Air Force Research Laboratory.

References

[1] Apparmor. https://wiki.ubuntu.com/AppArmor.

[2] Docker. https://www.docker.io.

[3] LXC. https://linuxcontainers.org.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schüpbach, and A. Singhania. The Multiker-
nel: A new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

[5] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy,
N. Hardy, C. R. Landau, and J. S. Shapiro. The KeyKOS nanok-
ernel architecture. In Proceedings of the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures. USENIX Associ-
ation, 1992.

[6] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Communications of the ACM, 9
(3):143–155, 1966.

[7] R. B. Findler and M. Blume. Contracts as pairs of projections. In
Proceedings of the 8th International Symposium on Functional
and Logic Programming, pages 226–241, 2006.

[8] R. B. Findler and M. Felleisen. Contracts for higher-order func-
tions. In Proceedings of the International Conference on Pro-
gramming, pages 48–59, 2002.

[9] M. Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Inc., 2010. http://racket-lang.org/
tr1/.

[10] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo. Hails: Protecting data privacy in un-
trusted web applications. In 10th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 47–60. USENIX,
2012.

[11] N. Hardy. KeyKOS architecture. Operating Systems Review, 19
(4):8–25, 1985.

[12] N. Hardy. The confused deputy: (or why capabilities might have
been invented). SIGOPS Operating Systems Review, 22(4):36–
38, 1988.

[13] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters.
Towards trustworthy computing systems: Taking microkernels to
the next level. SIGOPS Operating Systems Review, 41(4):3–11,
2007.

[14] S. Jana, D. E. Porter, and V. Shmatikov. TxBox: Building Secure,
Efficient Sandboxes with System Transactions. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy, May 2011.

[15] T. Kim and N. Zeldovich. Practical and effective sandboxing for
non-root users. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference, pages 139–144, Berkeley, CA,
USA, 2013. USENIX Association.

[16] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,
D. Mazières, R. Morris, M. Osborne, S. VanDeBogart, and
D. Ziegler. Make least privilege a right (not a privilege). In Pro-
ceedings of the 10th Conference on Hot Topics in Operating Sys-
tems, page 21, Berkeley, CA, USA, 2005. USENIX Association.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard os
abstractions. In Proceedings of Twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles, pages 321–334, 2007.

[18] A. Lackorzynski and A. Warg. Taming subsystems: Capabilities
as universal resource access control in L4. In Proceedings of
the Second Workshop on Isolation and Integration in Embedded
Systems, pages 25–30, 2009.

[19] J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles,
pages 237–250, 1995.

[20] P. Loscocco and S. Smalley. Integrating flexible support for se-
curity policies into the Linux operating system. In Proceedings
of the FREENIX Track: 2001 USENIX Annual Technical Confer-
ence, 2001.

[21] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE Symposium on
Security and Privacy, pages 125–140, May 2010.

[22] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-oriented
subset of Java. In Proceedings of the Network and Distributed
System Security Symposium. The Internet Society, 2010.

[23] B. Meyer. Design by contract. In Advances in Object-Oriented
Software Engineering, pages 1–50. Prentice Hall, 1991.

[24] B. Meyer. Applying “Design by Contract”. Computer, 25(10):
40–51, 1992.

[25] M. Miller, K.-P. Yee, and J. Shapiro. Capability myths demol-
ished. Technical Report SRL2003-02, Johns Hopkins University,
2003.

[26] M. S. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns
Hopkins University, Baltimore, Maryland, USA, May 2006.

[27] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized JavaScript. Google white paper.
http://google-caja.googlecode.com, 2008.

[28] J. H. Morris, Jr. Protection in programming languages. Commu-
nications of the ACM, 16(1):15–21, January 1973.

[29] P. G. Neumann and R. J. Feiertag. PSOS revisited. In Proceedings
of the 19th Annual Computer Security Applications Conference,
pages 208–216, Dec 2003.

[30] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
Laminar: Practical fine-grained decentralized information flow
control. In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 63–74, 2009.

[31] J. H. Saltzer. Protection and the control of information sharing
in Multics. Communications of the ACM, 17(7):388–402, July
1974. ISSN 0001-0782.

[32] M. Seaborn. PLASH: the principle of least authority shell, 2007.
http://www.cs.jhu.edu/˜seaborn/plash/html/.

[33] J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M. Miller.
Towards a verified, general-purpose operating system kernel. In
Proceedings of the NICTA Invitational Workshop on Operating
System Verification, pages 1–19. USENIX, 2004.

[34] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capabil-
ity system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, pages 170–185, 1999.

[35] B. Spengler. Grsecurity ACL docmentation v1.5, 2003.
http://grsecurity.net/gracldoc.htm.

[36] V. St-Amour and M. Felleisen. Feature-specific profiling. Techni-
cal Report NU-CCIS-8-28-14-1, Northeastern University, August
2014.

[37] M. Stiegler and M. Miller. A capability based client: The
DarpaBrowser. Technical Report BAA-00-06-SNK, COMBEX
Inc., June 2002.

[38] T. S. Strickland, S. Tobin-Hochstadt, R. Findler, and M. Flatt.
Chaperones and impersonators. In Proceedings of the ACM SIG-
PLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 943–962, 2012.

[39] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proceedings of the Con-
ference on Programming Language Design and Implementation,
pages 132–141, 2011.

[40] D. Wagner and D. Tribble. A security analysis of
the Combex DarpaBrowser architecture. Online at:
http://www.combex.com/papers/darpa-review/, Mar. 2002.

[41] R. Watson and C. Vance. The TrustedBSD MAC framework:
Extensible kernel access control for FreeBSD 5.0. In In USENIX
Annual Technical Conference, pages 285–296, 2003.

[42] R. N. M. Watson. A decade of OS access-control extensibility.
Communications of the ACM, 56(2):52–63, 2013.

[43] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Cap-
sicum: Practical capabilities for UNIX. In USENIX Security Sym-
posium, pages 29–46. USENIX Association, 2010.

[44] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 19–19, 2006.

